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As has been shown long time ago by Feshbach, the exact energy spectrum of the full problem can be obtained
by solving two different self-energy problems. In spite of the fact that the two effective Hamiltonians are
derived in very similar ways in one case, the exact energy spectrum of the full problem can be either real or
complex (depending on the boundary conditions), whereas the exact energy spectrum associated with the
second effective Hamiltonian has to be complex (excluding bound states in the continuum). The focus of this
paper is on the fact that in both cases the complex eigenvalues result from the same requirement of an out-
going boundary condition. The branching of quantum mechanics to standard (Hermitian) formalism and non-
Hermitian formalism is associated with the decision to express the exact energy spectrum with one of the two
possible self-consistent like problems where the use of the Green operator imposes an outgoing boundary
condition on the solutions of the time-independent Schrödinger equation. Our analysis is made for the case
where an ABC molecule has sufficient energy to dissociate to A + BC but not to A + B + C and not to AB
+ C or to AC + B.

A fundamental postulate in the standard quantum mechan-
ics is that any measurable dynamical quantity is presented
by a Hermitian operator. This postulate results from another
postulate in quantum mechanics which states that any
quantities that will ever be observed are the eigenvalues of
operators that represent the measurable quantities. Since the
measurable quantities such as velocity of free particles or
energy of stable atoms and molecules are real quantities, the
operators that represent the velocity or the total energy or
any other quantity of bound systems should be Hermitian
operators. However, these operators Ô, which represent
measurable dynamical quantities, are Hermitian provided they
operate on functions from a Hilbert space H such that 〈f |Ĥ|g〉
) [〈g|Ĥ|f 〉]*, where f and g are square integrable functions,
f, g ∈ L2(R) ) H, or periodic functions. The consequences
of this postulate are a series of theorems that serve as
milestones in the formalism of quantum mechanics. The
eigenvalues of the Hermitian operators are real and expecta-
tion values of any measurable quantity are real. The eigen-
functions of the Hermitian operators can serve as a complete
set in the series expansion of any wavepacket (including time-
dependent wavepackets) that represent the system under
study. That is, |Ψ〉 ) ∑jcj|j〉, where Ô|j〉 ) oj|j〉. The absolute
value of any one of the expansion coefficients, |cj|2, is the
probability of measuring a specific quantity, oj. This formal-
ism does not hold when quantum mechanics is derived within
the framework of the non-Hermitian approach. Within the
framework of the non-Hermitian formalism of quantum
mechanics, outgoing boundary conditions are imposed on the
eigenfunctions of the Hamiltonian. In the case of bound states,
the same solutions as in the standard (Hermitian) formalism
are obtained since the asymptotes of bound states are out
going waves with purely imaginary positive wave vectors.

However, by imposing outgoing boundary conditions on the
continuum eigenfunctions (i.e., the amplitudes of the incom-
ing waves are equal to zero as in the case of bound states),
complex eigenvalues are obtained associated with eigenfunc-
tions that exponentially diverge and by definition are not
embedded in the Hilbert space. Therefore, the Hamiltonian
becomes non-Hermitian due to the fact that the eigenfunctions
are not in the Hilbert space as required within the framework
of the standard (Hermitian) formalism of quantum mechan-
ics.1 These special solutions are associated with the complex
poles of the scattering matrix that are obtained within the
framework of the standard formalism of quantum mechanics.2

These poles are known as resonance states and describe
metastable states of the studied system that as time passes
breaks into subsystem. When the subsystems are ion and
electrons, this is either an autoionization3 or Auger ionization4

or intra-Coulombic decay (ICD) resonance phenomenon.5

When the subsystems are molecular radicals, atoms, or
molecules, this is the predissociation resonance phenomena.6

It is a point of interest to mention here that by applying
complex scaling transformations these resonance states decay
exponentially and become square integrable functions that
are embedded in the general Hilbert space (see reviews in
refs 2 and 7). In this paper, we will not consider the complex
scaling transformation and will focus on the association of
the predissociation resonances with the solutions obtained
by applying the Feshbach formalism to the closed channels
and not to the open ones as usually it is done in molecular
physics studies. The idea to apply the Feshbach formalism
to the closed channels is not new and has been done before
by Feshbach for nuclear physics problems.8 Here we apply
this approach to molecular physics problems, emphasizing
the role of the Green function in imposing outgoing boundary
conditions on the solutions which are associated with the
open channels and emphasizing the fact that by doing so we
get into the non-Hermitian sector of the domain of the
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Hamiltonian. We also emphasize in our derivation and
discussions presented here the branching of quantum me-
chanics into the Hermitian and non-Hermitian formalisms
when the Feshbach effective Hamiltonians are derived. We
stress the fact that complex eigenvalues are obtained not only
by solving the time-independent Schrödinger equation for
the closed channel’s Feshbach effective Hamiltonian but also
for the full physical Hamiltonian when outgoing boundary
conditions are imposed on the solutions that are embedded
in the continuum part of the spectrum.

In contrast to Hermitian Hamiltonians, which always have
a diagonalizable spectral decomposition in eigenfunctions,
non-Hermitian Hamiltonians may contain nondiagonalizable
(Jordan) blocks in their spectral decomposition consisting
of eigenfunctions (so-called incomplete spectrum, where the
number of the linearly independent eigenvectors of a given
square matrix that represents the operator is smaller than the
dimension of the matrix) and so-called associated functions
(see refs 9-11, where it has been proved that a non-Hermitian
Hamiltonian which consists of a linear combination of two
Hermitian noncommutative operators always can have an
incomplete spectrum). This structure, which superficially
might lead to the formal impression of an incompleteness of
the basis set and a defect in the eigenvalues, merely indicates
the appearance of new effects compared to those known for
standard Hermitian Hamiltonians. Another difference between
the standard formalism of quantum mechanics and the non-
Hermitian formalism is that the eigenvalues associated with
measurable quantities and expectation values can get complex
values. However, for this price, which is not as great as one
might expect, we gain by having a formalism that simplifies
the analytical and numerical calculations of a large number
of quantities of very different types that are associated with
the resonance phenomena.

In spite of the requirement of the physical operators to be
Hermitian, non-Hermitian Hamiltonians appear in the stan-
dard (conventional) quantum mechanics formalism when
effective Hamiltonians are derived. Let us briefly describe
how they are obtained and what are the significant results of
that derivation and its relevance to very general physical
phenomena known as Feshbach resonances for a multidi-
mensional system.8,12,13

In this paper, we will focus on the Feshbach resonances
of a three-atom molecule ABC when the following chemical
reaction takes place: ABCfA + BC. The Hermitian Hamil-
tonian of the system under our study, Ĥ, is a three-atom
molecule ABC, which depends on two types of coordinates
r associated with the diatom BC and R associated with the
position of the atom A with respect to the center of mass of
the diatom such that

as

where Ĥfinal(r) ) T̂r + limRf∞V(r,R), and T̂R and T̂r are the
kinetic operators associated respectively with the “dissocia-
tive” coordinate R that indicates the position of atom A with
respect to the center of mass of the diatom BC, while the
internal coordinate r indicates the position of B about C.
The Hamiltonian that describes atom A and molecule BC

obtained by the dissociation of ABC is Ĥfinal. Since we assume
here that the ABC molecule does not have enough energy to
break the chemical bond BC, Ĥfinal has a discrete spectrum
associated with the vibrational and rotational bound states
of the diatom BC such that

where n ) 0, 1, 2, ... and E0
th < E1

the< E2
th e ... and the

corresponding eigenfunctions are bound states. The super-
script th means that these bound states of the subsystem are
the threshold energies in the spectrum of the full Hamiltonian.
For example, in the case of three-atom molecule ABC, where
the final state consists of an atom A and diatom BC (there is
no interaction between A and BC), the bound state energies
of the diatomic molecule BC are the threshold energies
of the full three-body system ABC. For diatoms n ) 0, 1,
2, ... is a superindex that stands for two good quantum
numbers that are associated with the rotational and the
vibrational motions.

As mentioned above, we do not consider here the situation
where the system falls completely apart and the final
Hamiltonian is associated with three atoms A + B + C, which
are moving freely without interacting among themselves.

The atom A is temporarily trapped by the diatom BC, due
to the potential of interaction V(r, R), where R is the distance
of atom A from the center of mass of BC. r represents the
internal coordinates of the diatom. The time-independent
Schrödinger equation we solve here is given by

where E is in the continuum part of the spectrum of Ĥ. We
can expand the eigenfunction Ψ(R, r) by using the eigen-
functions of Ĥfinal as a basis set

Note that, in order to simplify the notation, we do not label
Ψ(R, r) by an index that is associated with the energy E. On
purpose we do not label Ψ(R, r) by another index that labels
the entrance channel in the scattering process, since unlike
the standard (Hermitian) formalism of quantum mechanics,
where the amplitude of the incoming wave gets a finite
nonvanishing values, within the framework of the non-
Hermitian formalism of quantum mechanics we impose on
the amplitude of the incoming wave to be vanished. We can
split this summation into two parts based on the fact that n
> nc are closed channels for “dissociation”, since E < En>nc

th ,
whereas n e nc are open channels for “dissociation”, since
E > Enenc

th . Following the Feshbach formalism, {Q} denotes
the subspace of the closed channels, and {P} of the open
channel subspace. Therefore, {Q} = {�n>nc

}, and {P} =
{�nenc

}. Using �n(r), which are associated with the closed
and the open channels as a basis set, eq 4 can be represented
in the following matrix form

Ĥ f T̂R + Ĥfinal(r) (1)

R f ∞ (2)

Ĥfinal(r)�n(r) ) En
th�n(r) (3)

ĤΨ(R, r) ) EΨ(R, r) (4)

Ψ(R, r) ) ∑
n

φn(R) �n(r) (5)

(HQQ HQP

HPQ HPP
)(φbQ(R)

φbP(R) ) ) E(φbQ(R)

φbP(R) )
(6)
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where

and

The subscript r introduces an integral over this variable only.
The system as defined by the Hamiltonian in eq 6 may be

reduced to two types of effective theories. One only in terms
of the φP components when we eliminate from the problem the
closed channels, while in the other approach, an effective theory
is derived in terms of the φQ components, eliminating from the
problem the open channels. In both cases the elimination of
the closed or the open channels from the problem is not an
approximation and in both cases the exact energy spectrum of
the problem is obtained. In our discussion given below, we
emphasize the association of the standard formulation of
quantum mechanics with the decision to derive the effective
theory in one way while the decision to derive an effective
theory by the other approach leads to the formulation of a non-
Hermitian quantum mechanics where metastable-resonance
states are associated with complex eigenvalues of the time-
independent Schrödinger equation as given in eq 4.

The two coupled equations presented in eq 6 can be reduced
to the following self-consistent like eigenvalue problem

where

In the transition from eq 6 to eq 9, we expressed φbQ in terms
of φbP

where �bQ is the homogeneous solution such that

Since E is a continuous variable while the spectrum of HQQ

is discrete, we have chosen as the homogeneous solution �bQ )
0. Note that φbQ is a square integrable function, which implies
that φbQ has outgoing boundary condition with purely imaginary
momentum, and consequently, by taking the homogeneous
solution as zero, we do not change the boundary condition of
φbQ. The term +iε in the Green operator ensures that in eq 11
only outgoing waves will be present in the closed channels φbQ

[see eq 8 for the definition of the closed and open channels].

The requirement on φbQ to have outgoing wave asymptotes does
not cause any problem, since the asymptotes of bound states
are indeed outgoing waves, exp(ikR) with Rk ) 0 and u k >
0.

The self-energy Hamiltonian given in eq 9 contains a
nonlocal, energy-dependent, and non-Hermitian operator, which
is known as the optical potential15

The physical meaning of the optical potential is clarified by
replacing the full Hamiltonian by an effective Hamiltonian for the
open channels only. The optical potential introduces processes in
which particles in the closed channels, φbQ, are scattered into one
or into several open channels.

Our proposition for a simple “point” where QM branches
into the standard (Hermitian) formalism and the non-Hermitian
formalism is based on the fact that the term iε in the Green
operator, Ĝ+(E) ) limεf0+(E + iε - Ĥ)-1 introduces outgoing
wave boundary conditions on |F〉 ) Ĝ+(E)|f 〉 for any wavepacket
|f 〉 that can be described as a linear combination of incoming
and outgoing waves. Although this fact is known (see, for
example, ref 16), for the sake of coherency of our presentation,
we briefly explain it in the Appendix.

Let us now return to the self-energy problem, eq 9. This
equation can be solved by an iterative procedure where in every
step of the iteration an eigenvalue problem is solved for a non-
Hermitian Hamiltonian. Since the original Hamiltonian Ĥ is an
Hermitian operator, the energy E gets real values only.
Therefore,

where E is real, although the effectiVe Hamiltonian is
non-Hermitian,

Since in the Hermitian (standard) formalism of quantum
mechanics the amplitude of the incoming waves get nonzero
values, the spectrum of Ĥeff

P is real as the spectrum of the full
Hamiltonian. The key point in this derivation is in the fact that
within the framework of the Feshbach formalism13 the non-
Hermitian optical potential has been derived for the open
channel, where the +iε in the denominator of the Green operator,
as defined in eq 10, imposes outgoing boundary conditions on
the φbQ, which are associated with the closed channel. As it has
already been mentioned above, the requirement of outgoing
wave boundary conditions from bound states does not produce
a flux, since limRf∞ φQ(R) ) A exp(ikR)f 0, where Rk ) 0
and u k > 0. What about the asymptotes of the open channels?
In order to get stationary solutions (i.e., flux is conserved), the
asymptotes of the open channels should be scattering states

where for m > nc (m stands for n or for n′)

[HQQ]n',n ) 〈�n'>nc
|Ĥ|�n>nc

〉r

[HPP]n',n ) 〈�n'enc
|Ĥ|�nenc

〉r

[HQP]n',n ) 〈�n'>nc
|Ĥ|�nenc

〉r

[HPQ]n',n ) [HQP]n,n'*

(7)

[φbQ(R)]n ) φn>nc
(R)

[φbP(R)]n ) φnenc
(R)

(8)

[HPP + HPQGQQ
+ (E)HQP)φbP(R) ) EφbP(R) (9)

GQQ
+ (E) ) lim

ε f0+
(EI - HQQ + iε) (10)

φbQ ) �bQ + GQQ
+ (E)HQPφ

bP (11)

(EI - HQQ)�bQ ) 0 (12)

Vopt
P (R, E) ) HPQGQQ

+ (E)HQP (13)

Ĥ eff
P (E) φbP(R) ) EφbP(R) (14)

Ĥ eff
P ) HPP + Vopt

P (R, E) (15)

φn>nc
(R) f� M

pkn
exp(-iknR) -

∑
n' >nc

Sn,n' (E)� M
pkn'

exp(+ikn′ R) (16)
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We can summarize the Feshbach formalism by saying that
the derivation of the self-energy effective Hamiltonian elimi-
nated the closed channels from the problem. The price we payed
for it is the need to solve a noneigenvalue problem for a non-
Hermitian, energy-dependent, and nonlocal Hamiltonian. How-
ever, since the boundary wave conditions are kept as in the
original problem, i.e., square integrable bound states are as-
sociated with the closed channels and scattering states are
associated with the open channels, the real energy E and the
eigenfunctions of the full Hermitian Hamiltonian are obtained.13

However, by imposing outgoing boundary condition on the
solutions of eq 14, the amplitudes of the incoming wave are
vanished, and consequently, the scattering matrix gets infinitely
large values (i.e., Sn, n′(E) ) ∞) when E get complex values.
These complex values of E are the poles of the scattering matrix
as obtained by solving the same equation, eq 14, within the
framework of the standard formalism of quantum mechanics.

Let us briefly review here how the resonances that are
associated with the poles of the S-matrix, i.e., Sn, n′(Eres) ) ∞,
where Eres ) Er(energy - position) - i/2Γ(width) were obtained
in a very simple way as described a long time ago by Feshbach.8

Here we will emphasize the outgoing boundary condition as
described above, which are imposed by the Green function.

Instead of deriving the effective Hamiltonian for the open
channels as described above and as appear in ref 13, the effective
Hamiltonian as defined for the closed channels (φQ representa-
tion) will be derived (see ref 8). As we will show below, this
is a very crucial point in our explanation of why complex
energies are obtained by solving the self-consistent-like problem
for the effective Hamiltonian as defined for the closed channels:
The self-consistent-like problem for the effective Hamiltonian
for the closed channels is given by

where

and the nonlocal energy operator that is associated with the
effective Hamiltonian of the closed channels is defined as

where the Green operator is now associated with the open
channel’s Hamiltonian and not with the closed channel’s
Hamiltonian

Here we are coming to a delicate point in our derivation. In
the transformation of the original full problem as presented in
eq 4 into eq 18 we used the following equality

As explained in the Appendix, the term +iε as it appears in
eq 21 ensures that the continuum functions φbP(E) as defined in
eq 22 have outgoing waves only and therefore are associated
with complex eigenvalues E. The only case where this kind of
solution is obtained within the framework of the standard(her-
mitian) formalism of quantum mechanics is when there are true
bound states in the continuum and E gets real values only.14

The requirement from φbP to have outgoing wave asymptotes
implies that the amplitudes of the incoming waves vanish, and
therefore, Sn, n′(E) ) ∞ (see eq 16). The scattering state
conditions that are needed to conserve the flux (see eq 16) are
not satisfied. Imposing outgoing wave boundary conditions on
φbP(R) imply that the flux is not conserved anymore. Therefore,
when we disregard the possibility of bound states in the
continuum,14 Sn, n′(E) ) ∞ for a complex value of E ) Eres, where
REres is in the continuum part of the spectrum. Since E for
which eq 18 is satisfied is the eigenvalue of the original full
problem, eq 4, it implies that E ) Eres ) Er(position) -
i/2Γ(width) is a resonance solution of our problem. We should
reemphasize the fact that the complex resonance eigenvalue E
) Eres is obtained here by solving eq 18, where the complex
resonance eigenvalue is associated with an eigenfunction that
is embedded in the generalized Hilbert space [i.e., (φbQ)2 is
integrable rather than |φbQ|2 as in the Hilbert space10].

We can summarize it by saying that by deriving the self-
energy effective Hamiltonian for the closed channels rather than
for the open channels, as had been done by Feshbach, we
eliminated the open channels from our problem. By doing so
we changed the wave boundary conditions for the original
problem. The continuum states that are associated with the open
channels are not scattering states and have outgoing wave
boundary conditions as the boundary wave conditions for the
bound states that are associated with the closed channels. This
gives a convinced explanation for the text book result that an
optical potential becomes a complex function for energies above
the thershold.15

If one wishes to define a point where the formulation of
quantum mechanics branches into the standard-Hermitian
formulation and the non-Hermitian formulation, it is the point
in our derivation where we decided to construct the effective
Hamiltonian for the closed channels rather than for the open
channels.

The question is, can E which solves eq 18 get a complex
value E ) Er - i/2Γ as proposed above?

The answer to this question is positive. E ) Er - (i/2)Γ is a
simple pole of the optical potential. Let us prove this claim.
The spectral representation of HPP is

where Ec stands for the continuum energy spectrum of the open
channels and F(Ec) is the density of states in the continuum.
When the continuum states are energy normalized such that
〈E|E′〉 ) δ(E - E′), there is no need to introduce F(Ec) into the
integration over Ec. We introduce here F(Ec) since we assume
that the continuum eigenfunctions were calculated using the box-
quantization condition while taking the limit of the box size to
infinity. The use of the box-quantization condition will help us
later in the derivation of the Fermi golden rule for the
calculations of the resonance widths (inverse lifetime). By using
the spectral representation of HPP, one gets that

(pkm)2

2M
) E - Em

th (17)

Ĥeff
Q (E) φbQ(R) ) EφbQ(R) (18)

Ĥeff
Q ) HQQ + Vopt

Q (R, E) (19)

Vopt
Q (R, E) ) HQPGPP

+ (E)HPQ (20)

GPP
+ (E) ) lim

εf0+
(EI - HPP + iε) (21)

φbP ) GPP
+ (E)HPQφbQ (22)

HPP ) ∫0

+∞
dEc EcF(Ec)|φbEc

P 〉〈φbEc

P | (23)
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assuming that all poles of the Green function are a finite
“distance” from the real Ec axis, then the contour of integration
along the real Ec (Ec varies from 0 to ∞) can be replaced by a
closed contour of integration in the complex Ec plane with the
radius |Ec

0| (i.e., Ec is varied from 0 to 2|Ec
0|, and from this point

return to the origin on the lower half of a circle the radius of
which is |Ec

0| and its center is on the real axis at |Ec
0|). The

replacement of the contour of integration from a contour on
the real axis to a closed contour in the complex plane is possible
when the integrand is exponentially small in the lower Ec half-
complex plane when |Ec| > |Ec

0|.
By using the definition of a delta function as the limit of a

function that exhibits a sharp peak about E, while its integral
over all space is equal to 1, one gets that

where PV stands for the (Cauchy) principle value.
By substituting eq 25 into eq 24 one obtains

Since eq 25 holds only for real values of E it implies that in
the derivation of eq 26 we carry out an approximation where
in the right-hand side of eq 26 we have to introduce the real
part of E. Another approximation we can apply in order to
simplify eq 26 is to assume the following.

(1) There is only one closed channel that supports a single
bound state, |Eb〉 and in the right-hand side of eq 26 we can
replace E by Eb since E is embedded close enough to the real
axis [the resonance (metastable) state is a narrow resonance that
has a sufficiently long lifetime to justify this approximation].

(2) There is only one open channel with the threshold ener-
gy E1

th ) 0, and ĤPQ :) V̂coup. We also assume here that the
continuum of the open channel is structureless. Namely, the
density of states, F(Ec), is varied monotonically with Ec > 0.

Under these assumptions, eq 26 is reduced to

where the resonance position is defined as Er ) Eb + ∆ and
the shift from the bound energy value is given by

Let us calculate, for example, the value of the shift in the
resonance position from the bound state energy in the closed

channel for the case where the density of states in the continuum
of the open channel is F(Ec) ) (1/Ec)1/2, the bound state in the
closed channel is the ground-state of one-dimensional harmonic
potential, and V̂coup ) ε0x exp(-(x/σ)2), where σ is much larger
than the size of the system which is under consideration (e.g.,
an atom, a molecule, or an artificial mesoscopic structure). The
use of a one-dimensional model Hamiltonian for atoms in laser
fields is commonly used in the literature, since the oscillating
field breaks the spherical symmetric property of the atom and
the electrons are ionized along the x-direction determined by
the ac-field. In this model, V̂coup is the coupling between the
bound state of the atom with the continuum due to the absorption
of one photon only (no multiphoton absorption processes) when
the weak ac-field is a cw linearly polarized light and therefore
by using the dressed picture formalism one gets that ε0 is
the maximum field amplitude of the laser field divided by 2. A
more detailed explanation is out of the scope of this paper. The
Gaussian window function introduces into our calculations the
fact that the laser beam has a finite width σ and therefore
the dipole introduced by the laser field is effective only in a
finite spatial region. For convenience, we use in solving this
problem atomic units with me ) p ) 1 ) a0, where the mass of
the electron is me and the Bohr radius is defined as a0 ) p2/
(mee2) ) 1. Therefore, Ec ) kc

2/2, where kc is the wave vector
of the continuum function of a free particle in the open channel.
The threshold energy of the open channel is taken here as 0.
Therefore, the bound state energy in the closed channel is
positive, i.e., Eb > 0. Since the singularity in the expression for
the resonance shift given in eq 28 is at Ec ) E, the PV of the
divergent integral is obtained by calculating the limit of the
integral outside the interval (Eb - ε, Eb + ε) as εf 0. Namely,
the shift in the resonance position from the bound state energy
in the closed channel, Eb, is defined as

The ground bound state in the closed channel is defined as
φbound

Q (x) ) (R/π)1/4 exp(-Rx2/2).
Within the interval -L/2 < x < + L/2, where L > 1/R is the

size of the system under consideration, V̂coup = ε0x. The matrix
element 〈φbound

Q |V̂coup|φEc
P 〉 is equal to

Therefore,

where Ei is the second exponential-integral function.17

E ) 〈φQ|ĤQQ|φQ〉 + 〈φbQ|Vopt(R, E)|φQ〉

) 〈ĤQQ〉 + ∫0

+∞
dEc F(Ec)〈φ

Q|HQP|φEc

P 〉 ×

〈φEc

P |HPQ|φQ〉 lim
εf0+

1
E - Ec + iε

(24)

lim
ε f0+

1
E - Ec + iε

) PV
1

E - Ec
- iπδ(E - Ec) (25)

E ) 〈φbQ|ĤQQ|φbQ〉 + PV∫0

∞
dEc F(Ec)

|〈φbQ|HQP|φbEc

P 〉|2

E - Ec

-iπF(E)〈φbQ|HQP|φbE
P〉〈φbE

P|HPQ|φbQ〉
(26)

E ) Er -
i
2

Γ (27)

∆ ) PV∫0

∞
dEc F(Ec)

|〈φbQ|V̂coup|φbEc

P 〉|2

Eb - Ec
(28)

∆ ) lim
εf0[∫0

Eb-ε
dEc

|〈φbound
Q |V̂coup|φEc

P 〉|2

√Ec(Eb - Ec)
+

∫Eb+ε

∞
dEc

|〈φbound
Q |V̂coup|φEc

P 〉|2

√Ec(Eb - Ec) ] (29)

〈φbound
Q |V̂coup|φEc

P 〉 ) ε0 ∫-∞

+∞
dx exp(-Rx2/2)x exp(+ikcx)

) iε0[2√2π/R3/2]k exp(-0.5k2/R) (30)

∆ = -ε0
2[8π/R3]lim

εf 0[∫0

Eb-ε
dEc

exp(-Ec/R)

Eb - Ec
+

∫Eb+ε

∞
dEc

exp(-Ec/R)

Eb - Ec

)-ε0
2[8π/R3]exp(-Eb/R)Ei(Eb/R)

(31)
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The resonance width Γ (i.e., inverse lifetime) is given by

where F(Eb) is the density of states in the open channel. Here
we neglect the shift of the resonance position from Eb. In the
case of one-dimensional problems or in the case of three-
dimensional problems with s-waves symmetry, or when the
photoionization are induced by a linearly polarized laser that
takes place primely along one direction, then F(Eb) = 1/�Eb.
Therefore, as the bound state in the closed channel approaches
the threshold energy of the open channel Γ(Feshbach) f ∞
(provided |〈φbQ|V̂coup|φbEb

P 〉|2 does not decay to zero faster or as
fast as F(Eb) when Ebf 0). This behavior is very different from
the behavior of the shape-type resonances, where the tunneling
through the potential barrier is suppressed as the position of
the resonance state approaches the threshold energy. We can
have a better estimate for the value of the decay rate Γ of the
Feshbach resonance as it touches from above the threshold
energy of the open channel (just before it becomes a bound
state) as Eb is varied by calculating the value of Eb for which
Eb + ∆ ) 0. Using the approximate expression for the Feshbach
resonance position given in eq 32, we can estimate the value
of Eb for which the resonance coincides with the threshold
energy of the open channel. For example, for the value of R )
1 the resonance position is at the threshold energy when Eb )
Eb

th ≡ 0.28309. Since F(Eb
th) gets a finite value, then Γ(Feshbach)

f finite value as well when the resonance position approaches
the threshold energy of the open channel.

Equation 32 we obtained for Γ (i.e., the resonance decay rate
which is inverse proportional to the resonance lifetime) is
identical to the Fermi golden rule expression.

It is important to realize that the complex eigenvalues
obtained by solving eq 19 with the non-Hermitian effective
Hamiltonian given in eq 4 are also eigenvalues of the physical
Hamiltonian given in eq 7. It implies that the corresponding
eigenfunction is not in the Hilbert space as in the conventional
(standard) formulation of quantum mechanics. The change of
the boundary conditions in the solutions of the time-independent
Schrödinger equation is “responsible” for the non-Hermitian
property of the physical Hamiltonian. We may say that the
solutions obtained in conventional quantum mechanics calcula-
tions are embedded in the Hermitian sector of the domain of
the operator, whereas the resonance solutions are embedded in
the non-Hermitian sector of the domain of the same physical
operator.

It is a point of interest that the resonance solutions that are
embedded in the non-Hermitian sector of the domain of the
Hamiltonian are obtained from a very common application of
the Green function method to the Hermitian (standard) formula-
tion of quantum mechanics, where the outgoing boundary
conditions are imposed by the Green operator.
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Appendix

As mentioned in the text, our proposition for a simple “point”
where QM branches into the standard Hhermitian) formalism
and the non-Hermitian formalism is based on the fact that the
term iε in the Green operator where ε > 0, i.e., Ĝ+(E) )
limεf0+(E + iε - Ĥ)-1, introduces outgoing wave boundary

conditions on |F〉 ) Ĝ+(E)|f 〉 for any wavepacket |f 〉 that can
be described as a linear combination of incoming and outgoing
waves. For ε < 0, the operation of the Green operator on a given
wavepacket introduces incoming boundary conditions on |F 〉
) Ĝ-(E)|f 〉. Although this fact is known (see, for example,
ref 16), for the sake of coherency of our presentation, we explain
it in this Appendix by emphasizing the role of the sign of ε.

The spectral representation of the Green operator is given
by

where ε f0+ (we omit the use of limεf0+ for brevity) and

The asymptote of the energy-normalized eigenfunctions ΨE′
consists of incoming and outgoing waves, (2πk)-1/2 exp(ikx),
which respectively are associated with negative and positive
momentum p ) pk and where (pk)2/2 ) E′ (here we use for
simplicity a one-dimensional Hamiltonian for noninteracting
particles). We will use the atomic units where me ) p ) 1.
Since we wish to show that the asymptote of Φ ) Ĝ+(E)φ is
an outgoing wavepacket we will calculate

where, φ∞(x) ) limxf∞ φ(x), Ĝ ∞
+(E) ) (E+ + 0.5 d2/dx2)-1, and

E+ :) E + iε. Therefore,

where

Next we will employ the residue theorem

Notice that exp[-i(2E+)1/2(x - x′)]f0 when x e x′ and
that it exponentially diverges when x > x′. Conversely,
exp[+i(2E+)1/2(x - x′)]f0 when x > x′ and it exponentially
diverges when x e x′. Consequently, by applying the Green
operator on the square-integrable wavepacket

Γ ) 2πF(Eb)|〈φb
Q|V̂coup|φbEb

P 〉|2 (32)

Ĝ+(E) ) 1
E + iε - H′ ) ∫ dE′

|ΨE′ 〈ΨE′|

E + iε - E′ (33)

ĤΨE' ) E′ΨE' (34)

lim
xf∞

Φ(x) ) Ĝ ∞
+(E) φ∞(x) (35)

lim
xf∞

Φ(x) ) ∫-∞

+∞
dx′ G E

+(x, x' ) φ∞(x' ) (36)

G E
+(x, x′ ) (2π)-1 ∫-∞

+∞
dk

eik(x-x′)

E+ - k2/2

) - ∫-∞
+∞dk eik(x-x′) 1

√8E+[ 1

k - √2E+
+

1

k + √2E+] (37)

∫-∞
+∞

dk
eik(x-x′ )

√2E+ ( k
) -2πie-i√2E+(x-x′ ) (38)
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Since as xf∞ the second term in the right-hand side of eq
39 vanishes, then

Equation 40 shows that the wave packet Φ ) Ĝ+(E)φ
indeed is constructed of outgoing waves only. This completes
the proof that the +iε in the Green operator, Ĝ+(E) ) limεf0+(E
+ iε - Ĥ)-1 introduces outgoing wave boundary conditions on
Φ ) Ĝ+(E)φ.
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Applications; Birkhäuser: Basel, 1985; Vol. 15.

(10) Moiseyev, N.; Certain, P. R.; Weinhold, F. Mol. Phys. 1978, 36,
1613–1630.

(11) Moiseyev, N.; Friedland, S. Phys. ReV. A 1980, 22, 618–623.
(12) Feshbach, H. Theoretical Nuclear Physics; John Wiley & Sons,

Inc., New York, 1992.
(13) Feshbach, H. Ann. Phys. 1958, 5, 357.
(14) Cederbaum, L. S.; et al. Phys. ReV. Lett. 2003, 90, 013001.
(15) Taylor, J. R. Scattering Theory; John Wiley & Sons, Inc., New

York, 1972.
(16) Mello, P. A.; Kumar, N. Quantum Transfer in Mesocopic Systems;

Oxford University Press Inc.: New York, 2004.
(17) See Eq 5.1.2: Abramowitz, M.; Stegun, I. A. Handbook of

Mathematical Functions; Dover Publications: New York, 1970.

JP8110925

lim
xf∞

Φ(x) ) 1

i√8E
e+i√2Ex[∫-∞

x
dx′ ei√2E+x′

φ∞(x' ) +

e-2i√2Ex ∫x
∞dx' e-i√2E+x′

φ∞(x' )] (39)

lim
xf∞

Φ(x) ) 1

i√8E
[∫-∞

+∞
dx' ei√2Ex′

φ∞(x' )]e+i√2Ex (40)
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